Health

Muscle mass that transfer the retina increase compound eye imaginative and prescient in Drosophila

Muscle mass that transfer the retina increase compound eye imaginative and prescient in Drosophila

  • Burtt, E. T. & Patterson, J. A. Inner muscle within the eye of an insect. Nature 228, 183–184 (1970).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hengstenberg, R. Das Augenmuskelsystem der Stubenfliege Musca domestica. Kybernetik 9, 56–77 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Franceschini, N., Chagneux, R., Kirschfeld, Okay. & Muecke, A. in Göttingen Neurobiology Report (eds. Elsner, N. & Penzlin, H.) Vol. 1, 275 (Thieme, 1991).

  • Hengstenberg, R. in Info Processing within the Visible Methods of Arthropods (ed. Wehner, R.) 93–96 (Springer, 1972).

  • Patterson, J. The attention muscle of Calliphora vomitoria L: II Transient responses to adjustments within the depth of illumination. J. Exp. Biol. 58, 585–598 (1973).


    Google Scholar
     

  • Northrop, R. B. in Introduction to Dynamic Modeling of Neuro-Sensory Methods (ed. Neumann, M. R.) 298–305 (CRC, 2000).

  • Patterson, J. The attention muscle of Calliphora vomitoria l. Spontaneous exercise and the impact of sunshine and darkish adaptation. J. Exp. Biol. 58, 565–583 (1973).


    Google Scholar
     

  • Franceschini, N. & Chagneux, R. in Göttingen Neurobiology Report (eds. Elsner N. & Wässle, H.) Vol. 2, 279 (Thieme, 1997).

  • Franceschini, N., Chagneux, R. & Kirschfeld, Okay. in Göttingen Neurobiology Report (eds. Elsner, N. & Menzel, R.) Vol. 1, 402 (Thieme, 1995).

  • Juusola, M. et al. Microsaccadic sampling of shifting picture data supplies Drosophila hyperacute imaginative and prescient. Elife 6, e26117 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joni, Okay. et al. Binocular mirror–symmetric microsaccadic sampling permits Drosophila hyperacute 3D imaginative and prescient. Proc. Natl. Acad. Sci. USA 119, e2109717119 (2022).


    Google Scholar
     

  • Kemppainen, J., Mansour, N., Takalo, J. & Juusola, M. Excessive-speed imaging of light-induced photoreceptor microsaccades in compound eyes. Commun. Biol. 5, 203 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viollet, S. Vibrating makes for higher seeing: from the fly’s micro-eye actions to hyperacute visible sensors. Entrance. Bioeng. Biotechnol. 2, 9 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franceschini, N. & Kirschfeld, Okay. Etude optique in vivo des éléments photorécepteurs dans l’œil composé de Drosophila. Kybernetik 8, 1–13 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Klapoetke, N. C. et al. Impartial optical excitation of distinct neural populations. Nat. Strategies 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franceschini, N. & Kirschfeld, Okay. Les phénomènes de pseudopupille dans l’œil composé de Drosophila. Kybernetik 9, 159–182 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Salcedo, E. et al. Blue- and green-absorbing visible pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J. Neurosci. 19, 10716–10726 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirschfeld, Okay. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Mind Res. 3, 248–270 (1967).

    CAS 
    PubMed 

    Google Scholar
     

  • Otsuna, H. & Ito, Okay. Systematic evaluation of the visible projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958 (2006).

    PubMed 

    Google Scholar
     

  • Hassan, B. A. et al. atonal regulates neurite arborization however doesn’t act as a proneural gene within the Drosophila mind. Neuron 25, 549–561 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford Univ. Press, 2012).

  • Bahill, A. T., Clark, M. R. & Stark, L. The primary sequence, a instrument for learning human eye actions. Math. Biosci. 24, 191–204 (1975).


    Google Scholar
     

  • Iwashita, M., Kanai, R., Funabiki, Okay., Matsuda, Okay. & Hirano, T. Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice. Neurosci. Res. 39, 299–311 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Schairer, J. O. & Bennett, M. V. L. Adjustments in acquire of the vestibulo-ocular reflex induced by mixed visible and vestibular stimulation in goldfish. Mind Res. 373, 164–176 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, B., Matsuo, V. & Raphan, T. Quantitative evaluation of the rate traits of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol. 270, 321–344 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes, G. R. Visible-vestibular interplay within the management of head and eye motion: the function of visible suggestions and predictive mechanisms. Prog. Neurobiol. 41, 435–472 (1993).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kim, A. J., Fenk, L. M., Lyu, C., & Maimon, G. Quantitative predictions orchestrate visible signaling in Drosophila. Cell 168, 280–294 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hateren, J. H. & Schilstra, C. Blowfly flight and optic move. II Head actions throughout flight. J. Exp. Biol. 202, 1491–1500 (1999).

    PubMed 

    Google Scholar
     

  • Cellini, B., Salem, W. & Mongeau, J.-M. Mechanisms of punctuated imaginative and prescient in fly flight. Curr. Biol. 31, 4009–4024 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Cellini, B. & Mongeau, J.-M. Energetic imaginative and prescient shapes and coordinates flight motor responses in flies. Proc. Natl. Acad. Sci. USA 117, 23085–23095 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Longden, Okay. D., Schützenberger, A., Hardcastle, B. J. & Krapp, H. G. Impression of strolling pace and movement adaptation on optokinetic nystagmus-like head actions within the blowfly Calliphora. Sci. Rep. 12, 11540 (2022).

  • Collett, T. S. & Land, M. F. Visible management of flight behaviour within the hoverfly Syritta pipiens L. J. Comp. Physiol. 99, 1–66 (1975).


    Google Scholar
     

  • Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial group of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).

    PubMed 

    Google Scholar
     

  • Hardie, R. C. & Franze, Okay. Photomechanical responses in Drosophila photoreceptors. Science 338, 260–264 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron courses within the fly lamina to movement imaginative and prescient. Neuron 79, 128–140 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strother, J. A., Nern, A. & Reiser, M. B. Direct commentary of on and off pathways within the Drosophila visible system. Curr. Biol. 24, 976–983 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Sweeney, S. T., Broadie, Okay., Keane, J., Niemann, H. & O’Kane, C. J. Focused expression of tetanus toxin gentle chain in Drosophila particularly eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Hausen, Okay. Movement delicate interneurons within the optomotor system of the fly. II. The horizontal cells: receptive area group and response traits. Biol. Cybern. 46, 67–79 (1982).


    Google Scholar
     

  • Schnell, B. et al. Processing of horizontal optic move in three visible interneurons of the Drosophila mind. J. Neurophys. 103, 1646–1657 (2010).

    CAS 

    Google Scholar
     

  • Choose, S. & Strauss, R. Aim-driven behavioral diversifications in gap-climbing Drosophila. Curr. Biol. 15, 1473–1478 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Triphan, T. et al. A display for constituents of motor management and choice making in Drosophila reveals visible distance-estimation neurons. Sci. Rep. 6, 27000 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Collett, T. S. & Harkness, L. I. Okay. in Evaluation of Visible Behaviour (eds. Ingle, D. J. et al.) 111–176 (MIT Press, 1982).

  • Vijayan, V. et al. An increase-to-threshold sign for a relative worth deliberation. Preprint at bioRxiv https://doi.org/10.1101/2021.09.23.461548 (2021).

  • Rosner, R., von Hadeln, J., Tarawneh, G. & Learn, J. C. A. A neuronal correlate of insect stereopsis. Nat. Commun. 10, 2845 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Land, M. F. Movement and imaginative and prescient: why animals transfer their eyes. J. Comp. Physiol. A 185, 341–352 (1999).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gibson, J. J. The Ecological Method to Visible Notion 1st edn (Psychology Press, 2014).

  • Salem, W., Cellini, B., Frye, M. A. & Mongeau, J.-M. Fly eyes aren’t nonetheless: a movement phantasm in Drosophila flight helps parallel visible processing. J. Exp. Biol. 223, jeb212316 (2020).

  • Cellini, B. & Mongeau, J. Energetic imaginative and prescient shapes and coordinates flight motor responses in flies. Proc. Natl Acad. Sci. USA 117, 23085–23095 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Maimon, G., Straw, A. D. & Dickinson, M. H. Energetic flight will increase the acquire of visible movement processing in Drosophila. Nat. Neurosci. 13, 393–399 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Strolling modulates pace sensitivity in Drosophila movement imaginative and prescient. Curr. Biol. 20, 1470–1475 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, B. D. et al. Refinement of instruments for focused gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ott, S. R. Confocal microscopy in giant insect brains: zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J. Neurosci. Strategies 172, 220–230 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Straw, A. D. & Dickinson, M. H. Motmot, an open-source toolkit for realtime video acquisition and evaluation. Supply Code Biol. Med. 4, 5 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Götz, Okay. G. Course-control, metabolism and wing interference throughout ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 35–46 (1987).


    Google Scholar
     

  • Inexperienced, J. et al. A neural circuit structure for angular integration in Drosophila. Nature 546, 101–106 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Seelig, J. D. et al. Two-photon calcium imaging from head-fixed Drosophila throughout optomotor strolling conduct. Nat. Strategies 7, 535–540 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Moore, R. J. D. et al. FicTrac: a visible technique for monitoring spherical movement and producing fictive animal paths. J. Neurosci. Strategies 225, 106–119 (2014).

    PubMed 

    Google Scholar
     

  • Reiser, M. B. & Dickinson, M. H. A modular show system for insect behavioral neuroscience. J. Neurosci. Strategies 167, 127–139 (2008).

    PubMed 

    Google Scholar
     

  • Aronov, D. & Tank, D. W. Engagement of neural circuits underlying 2D spatial navigation in a rodent digital actuality system. Neuron 84, 442–456 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, A. J., Fitzgerald, J. Okay. & Maimon, G. Mobile proof for efference copy in Drosophila visuomotor processing. Nat. Neurosci. 18, 1247–1255 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavenga, D. G. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on aspect lens F-number and rhabdomere sort in Drosophila. J. Comp. Physiol. A 189, 189–202 (2003).

    CAS 

    Google Scholar
     

  • Götz, Okay. G. Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965).

    PubMed 

    Google Scholar
     

  • Stavenga, D. G. in Comparative Physiology and Evolution of Imaginative and prescient in Invertebrates. Handbook of Sensory Physiology (ed. Autrum, H.) 357–439 (Springer, 1979).

  • Linneweber, G. A. et al. A neurodevelopmental origin of behavioral individuality within the Drosophila visible system. Science 367, 1112–1119 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Land, M. F. Visible acuity in bugs. Annu. Rev. Entomol. 42, 147–177 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Götz, Okay. G. Optomotorische Untersuchung des visuellen Methods einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).

    PubMed 

    Google Scholar
     

  • Keesey, I. W. et al. Inverse useful resource allocation between imaginative and prescient and olfaction throughout the genus Drosophila. Nat. Commun. 10, 1162 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     


  • #Muscle mass #transfer #retina #increase #compound #eye #imaginative and prescient #Drosophila

    Related Articles

    Back to top button