Health

Identification of environmental components that promote intestinal irritation

Identification of environmental components that promote intestinal irritation

  • Huang, H. et al. Wonderful-mapping inflammatory bowel illness loci to single-variant decision. Nature 547, 173–178 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamm, M. A. Speedy adjustments in epidemiology of inflammatory bowel illness. Lancet 390, 2741–2742 (2018).


    Google Scholar
     

  • Covacu, R. et al. System-wide evaluation of the T cell response. Cell Rep. 14, 2733–2744 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintana, F. J. et al. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PLoS ONE 5, e9478 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheeler, M. A. et al. Environmental management of astrocyte pathogenic actions in CNS irritation. Cell 176, 581–596 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, R. M. et al. DHODH modulates transcriptional elongation within the neural crest and melanoma. Nature 471, 518–522 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the therapy of inflammatory bowel illness. Nat. Med. 27, 1212–1222 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fleming, A., Jankowski, J. & Goldsmith, P. In vivo evaluation of intestine operate and illness adjustments in a zebrafish larvae mannequin of inflammatory bowel illness: a feasibility examine. Inflamm. Bowel Dis. 16, 1162–1172 (2010).

    PubMed 

    Google Scholar
     

  • Goettel, J. A. et al. AHR activation is protecting towards colitis pushed by T cells in humanized mice. Cell Rep. 17, 1318–1329 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard, A. M. et al. ToxCast chemical panorama: paving the street to twenty first century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Intestine, P. et al. Entire-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, S., Schulze, U., Tomancak, P. & Oates, A. C. Small molecule display in embryonic zebrafish utilizing modular variations to focus on segmentation. Nat. Commun. 8, 1901 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keiser, M. J. et al. Predicting new molecular targets for identified medication. Nature 462, 175–181 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B. et al. Dietary emulsifiers influence the mouse intestine microbiota selling colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaakoush, N. O. Sutterella species, IgA-degrading micro organism in ulcerative colitis. Tendencies Microbiol. 28, 519–522 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanmarco, L. M. et al. Intestine-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiering, C. et al. Suggestions management of AHR signalling regulates intestinal immunity. Nature 542, 242–245 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothhammer, V. et al. Microglial management of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okey, A. B., Vella, L. M. & Harper, P. A. Detection and characterization of a low affinity type of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol. Pharmacol. 35, 823–830 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Akashi, T. I., Nagano, Okay., Enomoto, E., Mizuno, M. & Shibaok, Okay. Results of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol. 29, 1053–1062 (1988).

    CAS 

    Google Scholar
     

  • Jackman, R. W., Rhoads, M. G., Cornwell, E. & Kandarian, S. C. Microtubule-mediated NF-κB activation within the TNF-α signaling pathway. Exp. Cell. Res. 315, 3242–3249 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garber, M. et al. A high-throughput chromatin immunoprecipitation strategy reveals ideas of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meredith, M. M. et al. Expression of the zinc finger transcription issue zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmentaite, R. et al. Single-cell sequencing of creating human intestine reveals transcriptional hyperlinks to childhood Crohn’s illness. Dev. Cell 55, 771–783 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. C. et al. Single-cell evaluation of Crohn’s illness lesions identifies a pathogenic mobile module related to resistance to anti-TNF remedy. Cell 178, 1493–1508 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cybulsky, M. I. et al. Gene construction, chromosomal location, and foundation for various mRNA splicing of the human VCAM1 gene. Proc. Natl Acad. Sci. USA 88, 7859–7863 (1991).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, H. & Ghosh, S. NF-κB: roles and regulation in several CD4+ T-cell subsets. Immunol. Rev. 252, 41–51 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel illness. Science 352, 1116–1120 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamas, B. et al. CARD9 impacts colitis by altering intestine microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothschild, D. et al. Setting dominates over host genetics in shaping human intestine microbiota. Nature 555, 210–215 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, S. S. et al. Dietary and microbial oxazoles induce intestinal irritation by modulating aryl hydrocarbon receptor responses. Cell 173, 1123–1134 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, D. J. Metabolic Pathways of Agrochemicals. Half One—Herbicides and Plant Progress Regulators (eds Roberts, T. et al.) (Royal Society of Chemistry, 1998).

  • Propyzamide; Pesticide Tolerances; https://www.federalregister.gov/paperwork/2016/01/13/2016-00534/propyzamide-pesticide-tolerances (US Authorities, 2016).

  • Chaiklieng, S., Suggaravetsiri, P. & Autrup, H. Danger evaluation on benzene publicity amongst gasoline station staff. Int. J. Environ. Res. Publ. Well being 16, 2545 (2019).

    CAS 

    Google Scholar
     

  • Ott, M. G., Diller, W. F. & Jolly, A. T. Respiratory results of toluene diisocyanate within the office: a dialogue of exposure-response relationships. Crit. Rev. Toxicol. 33, 1–59 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuenca, L. et al. Environmentally-relevant publicity to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation resulting in germline dysfunction in Caenorhabditis elegans. PLoS Genet. 16, e1008529 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Well being Group. Pointers for Consuming-Water High quality Vol. 2, Ch. 14.11, 461–467 (1996).

  • Toxicological Profile for Toluene Diisocyanate and Methylenediphenyl Diisocyanate (US Division of Well being and Human Providers, 2018).

  • World Well being Group. Pointers for Consuming-Water High quality Vol. 2, Ch. 14.21, 530–540 (1996).

  • Sorg, O. AhR signalling and dioxin toxicity. Toxicol. Lett. 230, 225–233 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Muku, G. E., Murray, I. A., Espín, J. C. & Perdew, G. H. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 8, 86 (2018).

    PubMed Central 

    Google Scholar
     

  • Gerondakis, S., Fulford, T. S., Messina, N. L. & Grumont, R. J. NF-κB management of T cell growth. Nat. Immunol. 15, 15–25 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramani, A. et al. Modular utilization of distal cis-regulatory components controls Ifng gene expression in T cells activated by distinct stimuli. Immunity 33, 35–47 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Q. et al. The Th17 immune response is managed by the Rel-RORγ-RORγ T transcriptional axis. J. Exp. Med. 208, 2321–2333 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yosef, N. et al. Dynamic regulatory community controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jostins, L. et al. Host-microbe interactions have formed the genetic structure of inflammatory bowel illness. Nature 491, 119–124 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, T. et al. Identification of an atypical monocyte and dedicated progenitor concerned in fibrosis. Nature 541, 96–101 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaronen, M., Wheeler, M. A. & Quintana, F. J. Protocol for inducing irritation and acute myelin degeneration in larval zebrafish. STAR Protoc. 3, 101134 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nüsslein-Volhard, C. & Dahm, R. Zebrafish: A Sensible Strategy 1st edn (Oxford Univ. Press, 2002).

  • Cusick, M. F., Libbey, J. E., Trede, N. S., Eckels, D. D. & Fujinami, R. S. Human T cell growth and experimental autoimmune encephalomyelitis inhibited by Lenaldekar, a small molecule found in a zebrafish display. J. Neuroimmunol. 244, 35–44 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Ridges, S. et al. Zebrafish display identifies novel compound with selective toxicity towards leukemia. Blood 119, 5621–5631 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ToxCast & Tox21 Abstract Recordsdata from invitrodb_v3; https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data (US EPA, accessed 28 October 2018).

  • Ruder, B., Atreya, R. & Becker, C. Tumour necrosis issue alpha in intestinal homeostasis and intestine associated ailments. Int. J. Mol. Sci. 20, 1887 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Andreou, N. P., Legaki, E. & Gazouli, M. Inflammatory bowel illness pathobiology: the position of the interferon signature. Ann. Gastroenterol. 33, 125–133 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McEntee, C. P., Finlay, C. M. & Lavelle, E. C. Divergent roles for the IL-1 household in gastrointestinal homeostasis and irritation. Entrance. Immunol. 10, 1266 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salas, A. et al. JAK-STAT pathway focusing on for the therapy of inflammatory bowel illness. Nat. Rev. Gastroenterol. Hepatol. 17, 323–337 (2020).

    PubMed 

    Google Scholar
     

  • Decara, J. et al. Peroxisome proliferator-activated receptors: experimental focusing on for the therapy of inflammatory bowel ailments. Entrance. Pharmacol. 11, 730 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernomian, L., Duarte-Silva, M. & de Barros Cardoso, C. R. The aryl hydrocarbon receptor (AHR) as a possible goal for the management of intestinal irritation: insights from an immune and micro organism sensor receptor. Clin. Rev. Allergy Immunol. 59, 382–390 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. Eigengene networks for finding out the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Camblor, P., Pérez-Fernández, S. & Díaz-Coto, S. The position of the p-value within the multitesting drawback. J. Appl. Stat. 47, 1529–1542 (2020).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Study. 45, 5–32 (2001).

    MATH 

    Google Scholar
     

  • Tong, H., Faloutsos, C. & Pan, J. Quick random stroll with restart and its functions. In Proc. Sixth Worldwide Convention on Knowledge Mining (ICDM’06) 613–622 (IEEE, 2006).

  • Kohler, S., Bauer, S., Horn, D. & Robinson, P. N. Strolling the interactome for prioritization of candidate illness genes. Am. J. Hum. Genet. 82, 949–958 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. & Horvath, S. A basic framework for weighted gene co-expression community evaluation. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Zhou, G. et al. NetworkAnalyst 3.0: a visible analytics platform for complete gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. S. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. Preprint at bioRxiv https://doi.org/10.1101/003236 (2014).

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-Seq information with or with out a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Close to-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. S., Soneson, C. & Robinson, M. D. Importing transcript abundance datasets with tximport. Bioconductor https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html (2017).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence rely information: eradicating the noise and preserving massive variations. Bioinformatics 35, 2084–2092 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic information. Cell Syst. 8, 281–291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq information utilizing regularized damaging binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout completely different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell information with Concord. Nat. Strategies 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER model 14: extra genomes, a brand new PANTHER GO-slim and enhancements in enrichment evaluation instruments. Nucleic Acids Res. 47, D419–D426 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Finak, G. et al. MAST: a versatile statistical framework for assessing transcriptional adjustments and characterizing heterogeneity in single-cell RNA sequencing information. Genome Biol. 16, 278 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. Extremely-high-throughput microbial neighborhood evaluation on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal inside transcribed spacer marker gene primers for microbial neighborhood surveys. mSystems 1, e00009-15 (2016).

    PubMed 

    Google Scholar
     

  • Cox, L. M. et al. Calorie restriction slows age-related microbiota adjustments in an Alzheimer’s illness mannequin in feminine mice. Sci. Rep. 9, 17904 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME permits evaluation of high-throughput neighborhood sequencing information. Nat. Strategies 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an efficient distance metric for microbial neighborhood comparability. ISME J. 5, 169–172 (2011).

    PubMed 

    Google Scholar
     

  • Chu, C. et al. The microbiota regulate neuronal operate and concern extinction studying. Nature 574, 543–548 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeste, A. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity via SOCS2. Sci. Sign. 9, ra61 (2016).

    PubMed 

    Google Scholar
     

  • Rothhammer, V. et al. Kind I interferons and microbial metabolites of tryptophan modulate astrocyte exercise and central nervous system irritation by way of the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burbach, Okay. M., Poland, A. & Bradfield, C. A. Cloning of the Ah receptor cDNA reveals a particular ligand-activated transcription issue. Proc. Natl Acad. Sci. USA 89, 8185–8189 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolwick, Okay. M., Schmidt, J. V., Carver, L. A., Swanson, H. I. & Bradfield, C. A. Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44, 911–917 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Lowe, M. M. et al. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 manufacturing. PLoS ONE 9, e87877 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track, J. et al. A ligand for the aryl hydrocarbon receptor remoted from lung. Proc. Natl Acad. Sci. USA 99, 14694–14699 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, A. J. et al. In silico identification of an aryl hydrocarbon receptor (AHR) antagonist with organic exercise in vitro and in vivo. Mol. Pharmacol. 86, 593–608 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • #Identification #environmental #components #promote #intestinal #irritation

    Related Articles

    Back to top button